
Analyzing Complex Systems
The BlackBerry Case

FX of Phenoelit

Step 1

Getting the big picture

Why Big Picture?

 You might not know every aspect of the target
 WYSIWYG is an intuitive but poor choice

 WYSIWYG is probably where the focus of the defending
side was

 The bigger the picture (system), the more clearly
you need to identify the promising attack vectors
… unless your organization has a three letter acronym and

you got unlimited time on your hands

Why Big Picture? II

 You might not know what resources you will need
 Hardware
 Software
 Infrastructure & Accounts
 Tools

 Getting what you need might take time
 Trying to get it might have other consequences

 Can you afford to invest money? How much?
 Can you afford to cross legal lines?
 Can you afford your target to know it’s under attack?
 Do you care?

 Big Picture I

 Before anything else, make sure you
identified all components in the game

 Don’t miss non-obvious components

Corp
Net

Big Picture II

 Abstraction of the big picture helps to
identify key areas to look at

 Split the picture into it’s major components

Internet

RSN
(RIM Secret

Network)

RIM UK

RIM Can

RIM Some

GSM

BES

Provider side
RIM Servers

BB Mgmt

Big Picture III

 Break down the primary components of the
system you are looking at:
 Handheld devices
 Mobile Network (i.e. GSM)
 RIM Network
 Internet based communication
 BlackBerry Enterprise Server
 BlackBerry Enterprise Server Connectors
 BlackBerry Management Tools

Big Picture IV

 Reclassify the key elements in common terms:
 Handheld devices

= Embedded system, proprietary hardware, RTOS, Java
 Mobile Network

= 2.5/3G GSM style infrastructure
 RIM Network

= unknown, likely IP based
 Internet based communication

= Proprietary IP based Protocols
 BlackBerry Enterprise Server and Connectors

= Windows based server software, closes source
 BlackBerry Management Tools

= Windows based client/server software

Big Picture V – Accessibility

 Accessibility of the components
 Handheld devices

 doable, $666 per device
 Mobile Network

 hard, illegal
 RIM Network

 doable, illegal
 Internet based communication

 doable, requires access to a working installation
 BlackBerry Enterprise Server and Connectors

 easy, see IDA
 BlackBerry Management Tools

 easy, see IDA

Big Picture VI – Impact

 Estimate the impact of a successful attack
 Handheld devices

 Information disclosure, potentially remote control of single user
 Mobile Network

 Redirection of communication endpoints
 RIM Network

 Full control over the infrastructure, being RIM
 Internet based communication

 Impersonation of RIM or BlackBerry Server, brute force attacks
 BlackBerry Enterprise Server and Connectors

 Code execution on host OS, owning of a centrally placed server
system in corporate networks

 BlackBerry Management Tools
 Modification of policies, sending messages to everyone, may be
installing software on handhelds (see Handheld devices)

BES Mgmt

Big Picture VII

Impact

E
a

s
e

 o
f

a
c

c
e

s
s

easy

hard

little massive

Handheld

Mobile Network

RIM Network

IP Protocols

BES

Step 2

Getting the details right

Diving into Details

 When you got the big picture completed, the
details are what matters most

 The details decide:
 How hard it will be to find an attack

 What you need

 How feasible the attack is

 How (il)legal the attack is

Handheld devices

 Simulation environment available
 Developer SDK available

 Current version is for Java
 Old version is for C

 Obviously more interesting (no sandbox)
 Only available for US and Canadian developers

 Desktop Software available
 Third party code available

 What do the 3rd party products do?
 What does this tell you about the powers of the API?

Protocols

 How many communication channels are used?

 Who initiates the communication, who can?

 What underlying protocols are used (i.e. are they
connection oriented or connection-less)?

 How much encapsulation is used?
 Multiple levels of encapsulation indicate a tree structure

of code handling the payload.

 Flat protocols indicate a single massive protocol parser.

 How variable is the protocol design?

Server Software

 How is the software designed?
 User-land, Service or Kernel?
 Security Context and required privileges?

 What building blocks is the software made of?
 Which handle user input?
 How is the user input transformed before handled by this

component?
 Who developed the component?
 What coding style was used?
 What programming language was used?
 Where is the interesting stuff stored?

Things to look at for details:

 History
 How old is the component compared to the overall scenario?
 Where does this component come from? What did the first release

do, what does the latest?
 Was there any major rewrite?
 Check the press releases.

 Documentation
 What are the setup requirements in administration guides?
 What are the troubleshooting procedures recommended?
 What are the troubleshooting procedures people actually use?

 Take what you read in publications, press releases,
documentation and forums as a hint, not a fact!

Step 3

Work

Work…

!$@*#$
BlackBerry!

Plop
This

sucks!

Beer!

1 hour10 hours20 hours30 hours40 hours50 hours100 hours200 hours300 hours400 hours500 hours...

Step 4

Results: The Handheld

First things first: strip it !

7290 naked
(back view)

First things first: strip it more!

7290 naked
(front view)

Handhelds

 Used to be 386, turns out
it’s an ARM (C SDK fairly
useless since it’s for 386)

 Different RTOS Kernels,
some run KADAK AMX 4, others run RIM
proprietary code. Every model is different.

 Binary images with hardware near code
 Loadable modules as PE/COFF DLLs linked

against the RIMOS.EXE main binary

Handheld JVM

 Java Virtual Machine loaded as largest
binary module (jvm.dll)
 CDLC 1.1, MIDP 2.0
 Java Vendor is RIM

 Limited set of J2ME classes
 Reflection API missing

 Device control via RIM classes
 Java applications are almost useless without

RIM class support

Code Signing

 Java Application signature
 To use RIM classes
 Signs a hash of the JVM binary (.jar)
 $100 to be paid by credit card
 Suspicion: Collection of a list of all platform binary’s

hashes in case they become malware
 News Flash: Stolen Credit Cards exist
 Replacing the class loader doesn’t work

 Firmware image signature
 Checked in Loader (see your debugger)
 Something is checked while device is loading

It’s not a Siemens, but …

 Browser Issue when parsing
.jad Files:
long name for
MIDlet-Name or -Vendor
 Exception thrown by the dialog

 Uncaught, modal dialog left over

 Browser toast, everything
else still works

 Soft- or Hard-Reset don’t work
(solution: denial all power to the device)

 RIM says it’s fixed in 4.0.2

Other things not tried yet

 Find the JTAG connectors
 Bluetooth on BlackBerry
 JVM bugs
 Reversing Images
 Figuring out checksums
 Loader.exe should be able

to read memory contents
from the device as well
(credit: mark@vulndev.org)

Step 5

Results: The Protocols

Server Relay Protocol

 Encapsulation protocol inside IPv4
 Simple header

 Multiple string or integer payload chunks in TLV
(type, length, value) format

IP PayloadIPv4 Header

SRP Header SRP Chunk SRP Chunk SRP Chunk
SRP
Term

Server Relay Protocol

Byte Meaning

1 Protocol Version

2 Function

3-6 Length of the entire message

Data
type

Byte Value/Meaning

String 1 0x53 / type identifier

 2-5 / length of the string

 6-x / content

Integer 1 0x49 / type identifier

 2-5 / value

Header

Chunk Format

SRP Opcodes

 01 - RETURN
 02 - DISCONNECT
 03 - RECEIVE
 04 - STATUS
 05 - SEND
 06 - CONNECT
 07 - REGISTER
 08 - DATA
 09 - PAUSE
 0A - RESEND
 13 - CANCEL

 14 - STATUS_ACK
 15 - SUBMITTED
 18 - DATA_ACK
 19 - RESUME
 21 - STATE
 F0 - RESET
 F1 - INFO
 F2 - CONFIG
 FC - PING
 FD - PONG
 FE - SRP Error

Session Setup

1. Client Server: System ID
2. Server Client: Server challenge

 Server Random seed + Random value + Ctime

3. Client Server: Client challenge
 Client Random seed + Random value + Service string

4. Server Client: HMAC_SHA1 (Client challenge)
 Transformed SRP Key used for HMAC_SHA1

5. Client Server: HMAC_SHA1 (Server challenge)
6. Server Client: init request
7. Client Server: init data

Successfully implemented a Server and a Client in Perl

Gateway Message Envelope

 Encapsulation protocol for messaging

 Routing Information of the message
 Source (Server Identifier or PIN)

 Destination (Server Identifier or PIN)

 Message ID

 Comparable to information in Email headers

IP PayloadIPv4 Header

SRP EncapsulationSRP Header

GME PayloadGME PayloadGME HeaderGME Header

Gateway Message Envelope

Field Format

Protocol version 1 byte

Source Type = 1 byte [0x10]
Length = 1 byte
Value

Destination Type = 1 byte [0x20]
Length = 1 byte
Value

Terminator 1byte = [0x00]

Message ID 4 byte

Application Identifier Type = 1 byte [0x50]
Length = 1 byte
Value

GME command 1 byte

Content length Variable length integer

Terminator 1byte = [0x00]

GME Format

Application Layer

 Application layer identifier in clear text
 CMIME = message

 CICAL = calendar updates

 ITADMIN = key updates, IT policies, etc.

 Email, calendar and others encrypted

 PIN messages in clear text
 Documented behavior, but very hard to find

Application Layer

Field Format

Encryption Type 1 byte

Key ID

Terminator 1 byte [0x00]

Session Key 32 Byte

Terminator 1 byte [0x00]

Message
identifier

1 byte [0x19]

Message

CMIME Format

Application Layer Payload

 AES or DES encryption
 Key ID in clear text
 Session Key encrypted with device

key
 Message compressed and

encrypted with session key
 Successfully implemented packet

dump message decryption script
with given key in Perl

SRP Header

GME Header

Encryption Type /
Key ID

Session Key

Message

A word about the crypto

 Crypto library is FIPS certified

 Phe-no-crypto-people

 Implementation looks good in the
disassembly

 No obvious key leak problems when
activating devices via USB

 Crypto may be re-Weis-ed (as in Rüdi)

Decoding Dumps

0000000: 0208 0000 0083 4900 0002 f953 I....S
000000c: 0000 006f 2010 0954 3636 3632 ...o ..T6662
0000018: 3334 3236 2008 3233 3233 3233 3426 .232323
0000024: 3233 0000 000c 3850 0543 4d49 23....8P.CMI
0000030: 4d45 0340 4a00 0230 2b47 2b62 ME.@J..0+G+b
000003c: 001f 5131 9943 34ba e60e f8e4 ..Q1.C4.....
0000048: 1b9e 94e5 62c7 38ac 91dc c88a b.8.....
0000054: ba93 6edf 1e32 6732 b800 19e7 ..n..2g2....
0000060: 1d40 d58b 0fbc eca3 0395 168c .@..........
000006c: ddb8 b66e 501a 1f08 9d5e 93b7 ...nP....^..
0000078: 3d07 475c 4115 6149 0000 0000 =.G\A.aI....
0000084: 4900 0000 0300 00 I......

MessageSRP KeyEncrypt HdrGME

Traffic analysis

 Traffic analysis based on header possible
 Sender PIN known

 Recipient PIN known

 Message content type known

 Timing known

 In combination with (il)legal interception of
SMTP email traffic
 Email address to PIN mapping

Protocol based attacks I

 SRP Session setup with someone else’s key and
SRP ID
 Legitimate key owner disconnected when modifying data

in the session startup
 New connection from either source results in the other

one begin dropped
After 5 reconnects in less than a minute, the key is

locked out. No BlackBerry service until RIM resolves the
issue.

 RIM Authentication keys are not viewed as secrets
by most companies
 Slides and screenshots with keys can be found by your

favorite search engine

Protocol based attacks II

 SRP String Type length field
 Integer overflow leads to Access Violation when initially

decoding packets

 Negative value -5 causes infinite decoding loop

 Affects at least router and enterprise server

.text:0042B11B OR eax, edx
 ; EAX is length field (now in Host Byte Order) after \x53
.text:0042B11D LEA edi, [eax+ecx]
 ; ECX is current position pointer in packet
.text:0042B120 CMP edi, ebx
 ; position + length > overall_length ?
.text:0042B122 JG short loc_42B19F
 ; jump to failure handling code if position + length points
 ; past the packet

Spam anyone?

 PIN messages not encrypted
 Therefore, no crypto code needed

 SRP authentication key can be used to PIN
message anybody, not only your users
 Any legitimate or stolen SRP key can be used

 Simple Perl script sufficient to send messages to
any PIN
 Sequentially sending it to all PINs

from 00000000 to FFFFFFFF ?
 Spoofing sender might be possible

(no evidence that it is not) – turns out it is!

Step 666

Results: The Enterprise Server

BlackBerry Enterprise Server

 BES Architecture

 SQL Database

 The beauty of updates

 Code style and quality

 Interesting libraries

 Attachment Service Special

BES Architecture

Notes

Router Dispatcher

MDS

Alert

Attachment
Service

Notes /
Exchange /
GroupWise

Connector

MS SQL

Internet

RIM

Policy
Service

BB Mgmt Software

BES Accounts

User
Admin
Account

Server
Mgmt
Account

Service
Account

Exchange
MailStore
Admin

Exchange
RO Admin

Local
Admin

Logon as
Service

Logon
Locally

SQL Database

 MS SQL Server with user authentication
 No integrated authentication for Domino

 Tables for individual messages and mails
 Table with SRP Authentication Key

 The most important secret between the BES and RIM
stored in clear text

 Table with Device Keys
 Previous, current and new/pending key
 Can be used for traffic decryption

 Default account: SA / (no password)

The beauty of updates

 RIM updates the BES
 Service Packs
 HotFixes
 Release and fix notes tend to be extremely

entertaining

 Hackers should update BES
 SABRE BinDiff
 Free .pdb debug information files in some fixes.

Many thanks to RIM.

Code style & quality

 Massive C++ code
 By-the-book pattern implementations
 Large classes
 STL
 Harder to reverse engineer

 Surprisingly good
 STL helps a lot
 “If in doubt, check again” approach

 A.k.a. select, select, select, recv

 But generally using signed integers,
although mostly correct

Interesting Libraries – reverse engineered

 Microsoft IStream classes
 Parsing of Microsoft Office documents

 Microsoft MSHTML4 engine
 Parsing of HTML documents

 MSXML SDK
 Installed, no idea what for.
 MSXML used for Sync server.

 Arizan parsing product
 Central parsing engine
 Parsing of PDF and Corel WordPerfect

Interesting Libraries – reverse engineered

 Zlib 1.2.1
 ZIP attachment handling is copy & paste

contrib/unzip.c (almost binary equal)

 Known bugs
1.2.3 is current

 GraphicsMagick 1.1.3
 ImageMagick spin-off

 Fully linked, including debug code and …

open source source audited

 …supported and compiled in file formats in
GraphicsMagick:
 ART, AVI, AVS, BMP, CGM, CMYK, CUR, CUT, DCM,

DCX, DIB, DPX, EMF, EPDF, EPI, EPS, EPS2, EPS3,
EPSF, EPSI, EPT, FAX, FIG, FITS, FPX, GIF, GPLT,
GRAY, HPGL, HTML, ICO, JBIG, JNG, JP2, JPC, JPEG,
MAN, MAT, MIFF, MONO, MNG, MPEG, M2V, MPC,
MSL, MTV, MVG, OTB, P7, PALM, PBM, PCD, PCDS,
PCL, PCX, PDB, PDF, PFA, PFB, PGM, PICON, PICT,
PIX, PNG, PNM, PPM, PS, PS2, PS3, PSD, PTIF, PWP,
RAD, RGB, RGBA, RLA, RLE, SCT, SFW, SGI, SHTML,
SUN, SVG, TGA, TIFF, TIM, TTF, TXT, UIL, UYVY,
VICAR, VIFF, WBMP, WMF, WPG, XBM, XCF, XPM,
XWD, YUV

Source audit: Use the Code Luke !

 GraphicsMagick ChangeLog:
 “coders/avi.c, bmp.c, and dib.c: applied security patch

from Cristy.”
 “coders/tiff.c (TIFFErrors): Prevent possible stack

overflow on error.”
 “coders/psd.c (ReadPSDImage): Fix stack overflow

vulnerability”
 “coders/tiff.c (ReadTIFFImage): Fix overflow while

computing colormap size.”
 Odd own format strings in arbitrary text fields of

any image format
 Expect image comment 100%tonne

to become 100C:\Windows\temp\bbaAA.tmponne

Reverse Engineering + Source results I

 Heap overflow in TIFF parser
 Integer overflow in image data memory

requirement allocation

 Allocation of small (0) memory block for image
data

Reverse Engineering + Source results II

 Heap overflow in PNG parser
 #define PNG_USER_WIDTH_MAX 1000000L

does not prevent integer overflows

 Overflow in memory allocation counter

 Allocation of small (1MB) memory block for
image data decompression

More Open Source results

 Zlib museum in PNG parser
 Paying attention?

Version 1.2.1 used, inclusive decompression bug

 PNG image data is zip compressed

 Heap overflow when decompressing image data

 Your arbitrary BugTraq example works

 Interestingly enough, known libPNG bugs are fixed

BES Architecture Attack

NotesNotes

Router Dispatcher

MDS

Alert

Attachment
Service

Notes /
Exchange /
GroupWise

Connector

MS SQL

Internet

RIM

Policy
Service

(_x_)

O
btain K

eys

Key

BES Architecture must be

Notes

Router Dispatcher

MDS

Alert Notes /
Exchange /
GroupWise

Connector

MS SQL

Internet

RIM

Policy
Service

Attachment
Service

Separate Attachment Service issue

 Remote control
 TCP port 1999

 Unauthenticated XML

 Query
 Version

 Statistics

 Number of processes

 Set number of processes
 Recommended test values: 0, 20000

Step 7

Mopping up

Vendor communication

 Vendor and users of the system in question
can greatly profit from the analysis done
 Well planned analysis yields unique insights in

the architecture and the effectiveness of fixes

 RIM
 re-work of attachment image parsing

 RIM customers
 Moving BES and Database in separate DMZ
 Separation of the attachment service

Finalizing

 Print offensive T-Shirts

 Meet with everyone involved

 Get drunk

 Send greets to random
people, such as:

Phenoelit, 13354, Halvar Flake & SABRE Security, THC,
all@ph-neutral, hack.lu, Scusi, mark@vulndev.org, Frank

Rieger, the Eschschloraque Rümpschrümp, mac, t3c0, trash,
the darklab@darklab.org people

and Ian Robertson from RIM

Contact: Contact: fxfx@@sabresabre-labs.com-labs.com
http://www.http://www.sabresabre-labs.com-labs.com

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

